
IJAICT Volume 4, Issue 2, February 2017
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.07.23 Published on 05 (2) 2017

Corresponding Author: Mr. Chaitali Tohgaonkar, GHREAT, RTMN University, Nagpur, India. 625

DESIGN OF PARALLEL CRC GENERATION FOR HIGH SPEED
APPLICATION

Mr. Chaitali Tohgaonkar, Prof. Sanjay Tembhurne Prof. Vipin Bhure

 Electronics and Communication Engineering,

GHREAT, RTMN University,

Nagpur, India.

Abstract— Error detection is important whenever there is a

non-zero chance of data getting corrupted. A Cyclic

Redundancy Check (CRC) is the remainder, or residue, of

binary division of a potentially long message, by a CRC

polynomial. This technique is ubiquitously employed in

communication and storage applications due to its

effectiveness at detecting errors and malicious tampering. The

hardware implementation of a bit-wise CRC is a simple linear

feedback shift register.This means that ‘n’ clock cycles will be

required to calculate the CRC values for an n-bit data stream.

Parallel CRC calculation can significantly increase the

throughput of CRC computations. In this paper CRC-32 is

design for Ethernet application. This paper presents

implementation of parallel Cyclic Redundancy Check (CRC)

based upon DSP algorithms of pipelining, retiming and

unfolding. The architectures are first pipelined to reduce the

iteration bound by using novel look-ahead techniques and

then unfolded and retimed to design high speed parallel

circuits.The methodology to be employed with VHDL, Xilinx

ISE for simulation and test benchverification.

Keywords— Cyclic Redundancy Check (CRC), Pipelining,

Retiming, Unfolding, VHDL Code.

I. INTRODUCTION

A CRC (Cyclic Redundancy Check) is a popular error-
detecting code computed through binary polynomial division.
To generate a CRC, the sender treats binary data as a binary
polynomial and performs the modulo-2 division of the
polynomial by a standard generator (e.g., CRC-32). The
remainder of this division becomes the CRC of the data, and it
is attached to the original data and transmitted to the receiver.
Receiving the data and CRC, the receiver also performs the
modulo-2 division with the received data and the same
generator polynomial. Errors are detected by comparing the
computed CRC with the received one. The CRC algorithm
only adds a small number of bits (32 bits in the case of CRC-
32) to the message regardless of the length of the original data,

and shows good performance in detecting a single error as well
as an error burst.

Cyclic redundancy check is commonly used in data
communication and other fields such as data storage, data
compression, as a vital method for dealing with data errors.
Usually, the hardware implementation of CRC computations
is based on the linear feedback shift registers (LFSRs), which
handle the data in a serial way. Though, the serial calculation
of the CRC codes cannot achieve a high throughput. In
contrast, parallel CRC calculation can significantly increase
the throughput of CRC computations. For example, the
throughput of the 32-bit parallel calculation of CRC-32 can
achieve several gigabits per second. However, that is still not
enough for high speed application such as Ethernet networks.
A possible solution is to process more bits in parallel;
Variants of CRCs are used in applications like CRC-16
BISYNC protocols, CRC32 in Ethernet frame for error
detection, CRC8 in ATM, CRC-CCITT in X-25 protocol, disc
storage, SDLC, and X MOD.

Serial CRC

Traditional method for generating serial CRC is based on
linear feedback shift registers (LFSR). The main operation of
LFSR for CRC calculations is nothing more than the binary
divisions. Binary divisions generally can be performed by a
sequence of shifts and subtractions. In modulo 2 arithmetic
the addition and subtraction are equivalent to bitwise XORs
(denoted by “⊕” in this paper) and multiplication is
equivalent to AND. Figure 1 illustrates the basic architecture
of LFSRs for serial CRC calculation [3].

Parallel CRC
There are different techniques for parallel CRC generation
given as follow.

 A Table-Based Algorithm for Pipelined CRC
Calculation.

 Fast CRC Update
 F matrix based parallel CRC generation.
 Unfolding, Retiming and pipelining Algorithm

© 2017 IJAICT (www.ijaict.com)

Corresponding Author: Mr. Chaitali Tohgaonkar, GHREAT, RTMN University, Nagpur, India. 626

Fig 1 : Block diagram of LFSR

Parallel processing used to increasing the throughput by
producing the no. of output same time. Retiming used to
increasing clock rate of circuit by reducing the computation
time of critical path. In fast CRC update technique not
required to calculate CRC each time for all the data bits,
instead of that calculating CRC for only those bits that are
change. There are different approaches to generate the
parallel CRC having advantages and disadvantages for each
technique. Table based architecture required pre-calculated
LUT, so, it will not used for generalized CRC, fast CRC
update technique required buffer to store the old CRC and
data. In unfolding architecture increases the no. of iteration
bound. The F matrix based architecture more simple and
low complex. But it increases the no. of LUTs [5].

II. LITERATURE REVIEW

Hitesh H. Mathukiya; Naresh M. Patel; “A Novel Approach
for Parallel CRC generation for high speed application,”
.In this paper, the parallel CRC generation deal with 64bit
parallel processing based on built in F matrix with order of
generator polynomial is 32. This gives CRC with half
number of cycles. It drastically reduces computation time to
50% and same time increases the throughput. The no. of
LUT getincreased, so area also get increase.

 Yan Sun; Min Sik Kim; , "A Pipelined CRC Calculation
Using Lookup Tables," In this paper, they present a fast
cyclic redundancy check (CRC) algorithm that performs
CRC computation for an arbitrary length of message. This
paper proposes a table-based hardware architecture for
calculating CRCby taking advantage of CRC’s properties
and pipelining the feedback loop. It achieves considerably

higher throughput than existing serial or byte-wise lookup
CRC algorithms.With delay increase in the critical path.

Weidong Lu and Stephan Wong, “A Fast CRC Update
Implementation”, IEEE Workshop on High Performance
Switching and Routing Oct. 2003.In this paper, they
presented a novel method to update theCRC code when
packets are passing through interconnectingdevices.
Andfocus on the CRC calculation that is performed during
the routing of the Ethernet packets be encapsulating the
packets into Ethernet frames, adding a frame header and
adding a frame trailer.Itcalculates the intermediate results of
the changed fields based on the parallel CRC calculation
and performs a single step update afterwards. And the
number of cycles is dramatically reduced.The fast CRC
update only calculates the changed portion of a frame.

Campobello, G.; Patane, G.; Russo, M.; "Parallel CRC
realization”. This paper presents a theoretical result in the
context of realizing high speed hardware for parallel CRC
checksums.The number of bits processed in parallel can be
different from the degree of the polynomial
generator.Presented Pre-calculated F-matrix based 32 bit
parallel processing. Which isfaster and more compact and is
independent of the technology used in its realization. But it
doesn’t work if polynomial change.

III. PROPOSED TECHNIQUE

The Pipelining, Retiming and Unfolding algorithm is used
in proposed paper which is used to reduced critical path
delay and clock cycle.

Pipelining: It reduces the effective critical path by
introducing pipelining latches along the criticaldata path
either to increase the clock frequency orsample speed or to
reduce power consumption at the same speed.

Retiming: Retiming is used to change the locations of delay
elements in a circuit without affecting the Input/output
characteristics of the circuit. It reduces the critical path of
the system by not altering the latency of the system.

Unfolding: It’s a transformation technique that can be
applied to DSP program to create a new program describing
more than one iteration of the original program.

IV. CONCLUSION

This paper shows the use of Parallel CRC for high speed
application such as Ethernet. This paper presents the
implementation of Parallel CRC-32 with the use of
Pipelining, Unfolding and Retiming algorithm. Pipelining

IJAICT Volume 4, Issue 2, February 2017

© 2017 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.07.23 Published on 05 (2) 2017

© 2017 IJAICT (www.ijaict.com)

Corresponding Author: Mr. Chaitali Tohgaonkar, GHREAT, RTMN University, Nagpur, India. 627

has decreased the iteration bound of the architecture
effectively. Applying unfolding technique to pipelined
architecture increased the throughput of the circuit and
thereby applying retiming to the architecture reduced the
critical path delay. So applying pipelining, unfolding and
retiming to the CRC has increased the throughput to achieve
high speed design.

References

[1] Hitesh H. Mathukiya; Naresh M. Patel; “A Novel Approach for
Parallel CRC generation for high speed application,” 2012 IEEE DOI.

[2] Y. Sun and M. S. Kim, “A table-based algorithm for pipelined CRC
calculation,” in Proceedings of IEEE International Conference on
Communications, May 2010.’

[3] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realization,”
IEEE Transactions on Computers, Oct. 2003.

[4] C. Cheng and K. K. Parhi, “High-speed parallel CRC implementation
based on unfolding, pipelining, and retiming,” IEEE Transactions on
Circuits and Systems, Oct. 2006.

[5] Weidong Lu and Stephan Wong, “A Fast CRC Update
Implementation”, IEEE Workshop on High Performance Switching
and Routing, Oct. 2003.

[6] W. Jiang and V. K. Prasanna, “A memory-balanced linear pipeline
architecture for trie-based IP lookup,” 2007.

IJAICT Volume 4, Issue 2, February 2017
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.07.23 Published on 05 (2) 2017

